1. Initiating Condition: High altitude airspeed decay with turbulence, autopilot engaged | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |-------------------|--|--|----------------------------------|--|--|--------------------------------| | | | | | | | | | Visual | Flashing box on digital airspeed display | AOA-compensated airspeed, not g-
compensated | | | | Increased airspeed | | Alerts | PLI on PFD/EADI nears/touches airplane symbol | AOA | | | | Reduction of AOA | | Aural
Alerts | Airspeed Low (if installed based on EGPWS model) | AOA-compensated airspeed, not g-
compensated | | | | Increased airspeed | | 7 | Stick shaker (sound of) | AOA | | | | Reduction of AOA | | Tactile
Alerts | Stick shaker | AOA | | | | Reduction of AOA | | Visual
Cues | Airspeed indication in amber
or red/black range | Top of amber band is minimum maneuvering speed (AOA compensated but not g-compensated). Bottom of amber=top of red/black band is stick shaker onset and is g-compensated. (See B737 FCTM p. 1.4) | | | | Reduction of AOA | 1. Initiating Condition: High altitude airspeed decay with turbulence, autopilot engaged – Cont. | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues
with regard to
alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |----------------|--|--|--|--|--|---| | | Amber "LE Devices" on
Annunciator Panel | Approaching
stall angle of
attack | | | As the aircraft approaches the stall angle, the slats automatically drive to the FULL EXTEND position prior to stick shaker activation. | The slats return to the EXTEND position when the pitch angle is sufficiently reduced below the stall critical attitude. | | Visual
Cues | PFD/ADI indications of uncommanded pitch | | Uncommanded pitch/roll and sink rate cues are not normally presented in training, so pilots may be less likely to interpret them as signifying a stall (especially in the absence of stick shaker cues) and also more likely to be distracted by them from stall diagnosis and recovery actions. | | | | | | Roll rate on PFD/EADI | | Uncommanded pitch/roll and sink rate cues are not normally presented in training, so pilots may be less likely to interpret them as signifying a stall (especially in the absence of stick shaker cues) and also more likely to be distracted by them from stall diagnosis and recovery actions. | | Uncommanded roll cues masked by autopilot roll inputs until the a/p disconnects (appears as wheel deflection, see below); however, rapid roll may accompany a/p disconnect at the stall. | | 1. Initiating Condition: High altitude airspeed decay with turbulence, autopilot engaged – Cont. | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues
with regard to
alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |-----------------------------|--|--|--|--|--|--------------------------------| | | Sink rate on vertical
speed display | | Uncommanded pitch/roll and sink rate cues are not normally presented in training, so pilots may be less likely to interpret them as signifying a stall (especially in the absence of stick shaker cues) and also more likely to be distracted by them from stall diagnosis and recovery actions. | | | | | | Wheel may move opposite the roll if autopilot is engaged | | | | | | | | Trim wheel motion | | | | | | | Aural
Cues | None | | | | | | | Tactile/
Somatic
Cues | Aerodynamic buffet | AOA (natural) | Can be confused with high speed buffet | | | Reduction
of AOA | # **Expected Pilot Response(s)** - Disconnect autopilot and autothrottle - Apply nose down pitch control until stall warning is eliminated - Apply nose-down trim as needed - Roll wings level - Adjust thrust as needed - Check speedbrakes retracted - Return to the desired flightpath # Possible sources of confusion with regard to pilot response(s) 1. Initiating Condition: High altitude airspeed decay with turbulence, autopilot engaged – Cont. | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues
with regard to
alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert
or cue is
terminated | |------|--------------|--|----------------------------------|--|--|--------------------------------------| |------|--------------|--|----------------------------------|--|--|--------------------------------------| - Autopilot may trim into low airspeed condition before disconnecting, resulting in nose-up pitch rate and greater need to re-trim during recovery. - Autopilot may disconnect while holding wheel input, resulting in rapid roll at the time of disconnection. - Uncommanded pitch/roll and sink rate cues also can result from other events besides stall, thus not necessarily signaling stall recovery to the pilot. Also these cues can draw the pilot's attention away from stall diagnosis or recovery actions. - High altitude stall may require greater nose-down input than the stalls trained in the simulator. - High altitude stall may lead to high speed buffet during recovery, with cues similar to low-speed buffet but different recovery actions required. - Erroneous pilot inputs (i.e., nose-up pitch inputs) can exacerbate stall or prevent recovery. #### How does pilot know condition is resolved/recovered? Cessation of stall warning alerts. #### <u>Issues with regard to multiple concurrent non-normal conditions</u> - Condition may devolve to engine surge and/or wing-walking (roll reversals from stall exacerbated by pilot rudder/wheel inputs). - Possible passenger injuries and aircraft damage. # 2. Initiating Condition: Increasing load factor in nose-low, high bank upset, autopilot disengaged | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is
inhibited/suppressed
or when cue is
masked | How alert or cue is terminated | |-------------------|--|--|--|---|---|--------------------------------| | | Τ | | | | | | | | Flashing box on digital airspeed display | AOA-compensated airspeed, not g-
compensated | | | | Increased
airspeed | | Visual
Alerts | PLI on PFD/EADI
nears/touches
airplane symbol | AOA | | | | Reduction of AOA | | | Red/black band on airspeed indicator rising towards airspeed pointer | Bottom of amber band=top of red/black band is stick shaker onset and is g (AOA) compensated | | | Airspeed cues
depend on proper
AOA compensation | Reduction of AOA | | | Airspeed Low (if installed based on EGPWS model) | AOA-compensated airspeed, not g-
compensated | | | | Increased
airspeed | | Aural
Alerts | Stick shaker (sound of) | AOA | | | | Reduction of AOA | | | GPWS "Bank angle" | Bank angle >35 degrees | | This is not an alert to the stall, but rather to the excessive bank angle from the roll upset | | Reduction of bank angle | | Tactile
Alerts | Stick shaker | AOA | | | | Reduction of AOA | | Visual
Cues | Airspeed indication
in amber or red/black
band | Top of amber band is minimum maneuvering speed (not g-compensated). Bottom of amber=top of red/black band is stick shaker onset and is g (AOA) compensated | Indicated airspeed at
stall will be greater
than usual due to load
factor | | Airspeed cues
depend on proper
AOA compensation | Reduction of
AOA | 2. Initiating Condition: Increasing load factor in nose-low, high bank upset, autopilot disengaged – Cont. | Туре | Alert or cue | Threshold
for alert or
cue to be
presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert
or cue is
terminated | |----------------|---|---|--|--|--|--------------------------------------| | | PFD/ADI
indications of
uncommanded
pitch | | Uncommanded pitch/roll and sink rate cues from stall are extremely difficult to isolate and identify during a dynamic roll upset, so pilots may be very unlikely to interpret them as signifying a stall (especially in the absence of stick shaker cues). | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | Visual
Cues | Roll rate of
PFD/EADI | | Uncommanded pitch/roll and sink rate cues from stall are extremely difficult to isolate and identify during a dynamic roll upset, so pilots may be very unlikely to interpret them as signifying a stall (especially in the absence of stick shaker cues). | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | | Sink rate on
vertical speed
display | | Uncommanded pitch/roll and sink rate cues from stall are extremely difficult to isolate and identify during a dynamic roll upset, so pilots may be very unlikely to interpret them as signifying a stall (especially in the absence of stick shaker cues). | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | Aural
Cues | Wind noise | | Wind noise is not a reliable cue to angle-of-attack, but loud wind noise may potentially mislead pilots into thinking they are not stalling during a high-speed stall | | | | 2. Initiating Condition: Increasing load factor in nose-low, high bank upset, autopilot disengaged – Cont. | Туре | Alert or cue Alert or cue Confusion regarding alert or cue presented | | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert
or cue is
terminated | | |-----------------|---|------------------|---|--|--------------------------------------|--| | Tactile/ | Unusual
wheel/column
forces | | Changes in the required control forces from stall are extremely difficult to isolate and identify during a dynamic roll upset, so pilots may be very unlikely to interpret them as signifying a stall (especially in the absence of stick shaker cues). | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | Somatic
Cues | Aerodynamic
buffet | AOA
(natural) | Buffet cues from stall are extremely difficult to isolate and identify during a dynamic roll upset, so pilots may be very unlikely to interpret them as signifying a stall (especially in the absence of stick shaker cues). Also may be confused with high speed buffet. | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | # **Expected Pilot Response(s)** - Disconnect autopilot and autothrottle - Apply nose down pitch control until stall warning is eliminated - Apply nose-down trim as needed - Roll wings level - Adjust thrust as needed - Check speedbrakes retracted - Return to the desired flightpath # Possible sources of confusion with regard to pilot response(s) - Stall in nose-low condition (or devolving to nose-low condition) can require counter-intuitive pitch-down control inputs. - If terrain proximity, the pilot may have to pitch down while being presented with a "Pull Up" GPWS warning. - Erroneous pilot inputs (i.e., nose-up pitch inputs) can exacerbate stall or prevent recovery. 2. Initiating Condition: Increasing load factor in nose-low, high bank upset, autopilot disengaged – Cont. # How does pilot know condition is resolved/recovered? • Termination of stall warning alerts. # <u>Issues with regard to multiple concurrent non-normal conditions</u> - Recovery from stall condition must be followed immediately by recovery from nose-low, high bank upset condition. - Possible passenger injuries and aircraft damage. # 3. Initiating: Wing ice accumulation | Туре | Alert or cue | Threshold
for alert or
cue to be
presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |-------------------|--|---|---|---|--|--------------------------------| | Visual
Alerts | None: PLI is present but may not be touching the aircraft symbol when the stall occurs (suggesting to the pilot that the aircraft is not stalling) | | The expected alerts
and cues will be
absent | | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | | | Aural
Alerts | None | | The expected alerts
and cues will be
absent | | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | | | Tactile
Alerts | None | | The expected alerts
and cues will be
absent | Pilots are trained extensively to associate stick shaker as trigger to stall recovery; in absence of stick shaker (warning system failure or stall at lower-thannominal AOA) they may not interpret the secondary cues of buffet, roll, etc. as being related to stall. | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | | | Visual
Cues | None: airspeed appears to be adequate but is not; airplane may stall while indicated airspeed is in the amber band but not in or touching the red/black band | | The expected alerts
and cues will be
absent | Pilots do not usually receive simulator training for stall at increased load factor/during roll upset so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | | 3. Initiating: Wing ice accumulation – Cont. | Туре | Alert or cue | Threshold
for alert or
cue to be
presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |----------------|--|---|---|--|--|--------------------------------| | | PFD/ADI indications of uncommanded pitch | | In the absence of the expected, salient alerts, these cues may not be interpreted as being related to stall | Pilots do not usually receive simulator training for stall at reduced AOA so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | Visual
Cues | Roll rate of PFD/EADI | | In the absence of the expected, salient alerts, these cues may not be interpreted as being related to stall | Pilots do not usually receive simulator training for stall at reduced AOA so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | | Sink rate on vertical speed display | | In the absence of the expected, salient alerts, these cues may not be interpreted as being related to stall | Pilots do not usually receive simulator training for stall at reduced AOA so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | | | | Aural
Cues | None | | The expected alerts
and cues will be
absent | Pilots do not usually receive simulator training for stall at reduced AOA so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | | 3. Initiating: Wing ice accumulation – Cont. | Туре | Alert or cue | Threshold
for alert or
cue to be
presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |-----------------------------|---|---|---|--|--|--------------------------------| | Tactile/
Somatic
Cues | Buffet; unusual
wheel/column forces
(autopilot off) or
displacements
(autopilot on) | AOA
(natural) | In the absence of the expected, salient alerts, these cues may not be interpreted as being related to stall | Pilots do not usually receive simulator training for stall at reduced AOA so they are not accustomed to recognizing/reacting to these cues in the stress, novelty, and workload of a roll upset. | Alerts and cues are masked by the icing condition which causes the aircraft to stall at lower-thannormal AOA | Reduction
of AOA | # **Expected Pilot Response(s)** - Disconnect autopilot and autothrottle - Apply nose down pitch control until stall warning is eliminated - Apply nose-down trim as needed - Roll wings level - Adjust thrust as needed - Check speedbrakes retracted - Return to the desired flightpath ### Possible sources of confusion with regard to pilot response(s) - In the absence of the usual salient alerts, the pilots may not realize that the aircraft is stalled. - Erroneous pilot inputs (i.e., nose-up pitch inputs) can exacerbate stall or prevent recovery. # How does pilot know condition is resolved/recovered? • Difficult to know, related to cessation of uncommanded pitch/roll/sink. # <u>Issues with regard to multiple concurrent non-normal conditions</u> - Condition may devolve to engine surge and/or wing-walking (roll reversals from stall exacerbated by pilot rudder/wheel inputs). - Possible passenger injuries and aircraft damage. # B737NG Alerting Issues – Stall 4. Initiating: False stall warning during takeoff rotation | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert or cue is terminated | |-------------------|---|--|---|--|--|---| | Visual
Alerts | PLI touches airplane symbol
on PFD/EADI (false
indication) | AOA | Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. | | Inhibition/suppression
not relevant because
the alert is false | Alert or cue is not terminated as it is invalid | | Aural
Alerts | Stick shaker, sound of (false indication) | AOA | Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. | | Inhibition/suppression
not relevant because
the alert is false | Alert or cue is not terminated as it is invalid | | Tactile
Alerts | Stick shaker (false
indication) | AOA | Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. | | Inhibition/suppression
not relevant because
the alert is false | Alert or cue is
not terminated
as it is invalid | | Visual
Cues | Normal vertical speed, altimeter, and airspeed indications on PFD, as well as view through the windshield of the aircraft climbing (if VMC) are subtle cues that the aircraft is not stalling | | Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. | | | | | Aural
Cues | None | | | | | | 4. Initiating: False stall warning during takeoff rotation – Cont. | Туре | Alert or cue | Threshold for alert or cue to be presented | Confusion regarding alert or cue | Other issues with regard to alert or cue | When alert is inhibited/suppressed or when cue is masked | How alert
or cue is
terminated | |-----------------------------|---|--|---|--|--|--------------------------------------| | Tactile/
Somatic
Cues | Normal vertical acceleration from rotation into climb is a subtle cue that the aircraft is not stalling | | Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. | | | | #### **Expected Pilot Response(s)** - Ignore false alerts and cues. - Do not reject takeoff. ### Possible sources of confusion with regard to pilot response(s) - Conflict between highly salient, but false alerts and subtle, valid cues: Salient alerts that the airplane is stalled must be compared with normal rotation/climb performance under extreme time pressure, and ignored. - Pilots are trained to respond to stall warnings/alerts immediately and without deliberation, decreasing the likelihood of identifying the false warning through effortful analysis and suppressing the reaction to the false warning. - Split-second decision to perform a late rejection or continue. # How does pilot know condition is resolved/recovered? Observe normal takeoff and climb performance. ### Issues with regard to multiple concurrent non-normal conditions • None unless pilot takes unneeded actions, such as high speed RTO.